

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	zope.copy 4.0 documentation

zope.copy Documentation

Contents:

	Using zope.copy
	Copying persistent objects

	Simple hooks

	Post-copy functions

	Resuming recursive copy

	clone() vs copy()

	LocationCopyHook

	zope.copy API Reference
	zope.copy.interfaces

	Hacking on zope.copy
	Getting the Code

	Working in a virtualenv

	Using zc.buildout

	Using tox

	Contributing to zope.copy

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	zope.copy 4.0 documentation

Using zope.copy

Copying persistent objects

This package provides a pluggable way to copy persistent objects. It
was once extracted from the zc.copy package to contain much less
dependencies. In fact, we only depend on zope.interface to provide
pluggability.

The package provides a clone() function that does the object cloning
and the copy() wrapper that sets __parent__ and
__name__ attributes of object’s copy to None. This is useful
when working with Zope’s located objects (see zope.location package).
The copy() function actually calls the clone() function, so
we’ll use the first one in the examples below. We’ll also look a bit at
their differences in the end of this document.

The clone() function (and thus the copy() function that wraps it)
uses pickling to copy the object and all its subobjects recursively.
As each object and subobject is pickled, the function tries to adapt it
to zope.copy.interfaces.ICopyHook. If a copy hook is found,
the recursive copy is halted. The hook is called with two values: the
main, top-level object that is being copied; and a callable that supports
registering functions to be called after the copy is made. The copy hook
should return the exact object or subobject that should be used at this
point in the copy, or raise zope.copy.interfaces.ResumeCopy
exception to resume copying the object or subobject recursively after
all.

Note that we use zope’s component architecture provided by the
zope.component package in this document, but the
zope.copy package itself doesn’t use or depend on it, so
you can provide another adaptation mechanism as described in
zope.interface‘s adapter documentation.

Simple hooks

First let’s examine a simple use. A hook is to support the use case of
resetting the state of data that should be changed in a copy – for
instance, a log, or freezing or versioning data. The canonical way to
do this is by storing the changable data on a special sub-object of the
object that is to be copied. We’ll look at a simple case of a subobject
that should be converted to None when it is copied – the way that the
zc.freeze copier hook works. Also see the zc.objectlog copier module
for a similar example.

So, here is a simple object that stores a boolean on a special object.

zope.copy.examples.Demo
class Demo(object): #pragma NO COVER

 _frozen = None

 def isFrozen(self):
 return self._frozen is not None

 def freeze(self):
 self._frozen = Data()

zope.copy.examples.Data
class Data(object): #pragma NO COVER
 pass

Here’s what happens if we copy one of these objects without a copy hook.

>>> from zope.copy.examples import Demo, Data
>>> original = Demo()
>>> original.isFrozen()
False
>>> original.freeze()
>>> original.isFrozen()
True
>>> import zope.copy
>>> copy = zope.copy.copy(original)
>>> copy is original
False
>>> copy.isFrozen()
True

Now let’s make a super-simple copy hook that always returns None, no
matter what the top-level object being copied is. We’ll register it and
make another copy.

>>> import zope.component
>>> import zope.interface
>>> import zope.copy.interfaces
>>> def _factory(obj, register):
... return None
>>> @zope.component.adapter(Data)
... @zope.interface.implementer(zope.copy.interfaces.ICopyHook)
... def data_copyfactory(obj):
... return _factory
...

>>> zope.component.provideAdapter(data_copyfactory)
>>> copy2 = zope.copy.copy(original)
>>> copy2 is original
False
>>> copy2.isFrozen()
False

Much better.

Post-copy functions

Now, let’s look at the registration function that the hook can use. It
is useful for resetting objects within the new copy – for instance, back
references such as __parent__ pointers. This is used concretely in the
zc.objectlog.copier module; we will come up with a similar but artificial
example here.

Imagine an object with a subobject that is “located” (i.e., zope.location) on
the parent and should be replaced whenever the main object is copied.

zope.copy.examples.Subobject
class Subobject(zope.location.location.Location): #pragma NO COVER

 def __init__(self):
 self.counter = 0

 def __call__(self):
 res = self.counter
 self.counter += 1
 return res

>>> import zope.location.location
>>> from zope.copy.examples import Subobject
>>> o = zope.location.location.Location()
>>> s = Subobject()
>>> o.subobject = s
>>> zope.location.location.locate(s, o, 'subobject')
>>> s.__parent__ is o
True
>>> o.subobject()
0
>>> o.subobject()
1
>>> o.subobject()
2

Without an ICopyHook, this will simply duplicate the subobject, with correct
new pointers.

>>> c = zope.copy.copy(o)
>>> c.subobject.__parent__ is c
True

Note that the subobject has also copied state.

>>> c.subobject()
3
>>> o.subobject()
3

Our goal will be to make the counters restart when they are copied. We’ll do
that with a copy hook.

This copy hook is different: it provides an object to replace the old object,
but then it needs to set it up further after the copy is made. This is
accomplished by registering a callable, reparent() here, that sets up
the __parent__. The callable is passed a function that can translate
something from the original object into the equivalent on the new object.
We use this to find the new parent, so we can set it.

>>> import zope.component
>>> import zope.interface
>>> import zope.copy.interfaces
>>> @zope.component.adapter(Subobject)
... @zope.interface.implementer(zope.copy.interfaces.ICopyHook)
... def subobject_copyfactory(original):
... def factory(obj, register):
... obj = Subobject()
... def reparent(translate):
... obj.__parent__ = translate(original.__parent__)
... register(reparent)
... return obj
... return factory
...
>>> zope.component.provideAdapter(subobject_copyfactory)

Now when we copy, the new subobject will have the correct, revised __parent__,
but will be otherwise reset (here, just the counter)

>>> c = zope.copy.copy(o)
>>> c.subobject.__parent__ is c
True
>>> c.subobject()
0
>>> o.subobject()
4

Resuming recursive copy

One thing we didn’t examine yet is the use of ResumeCopy exception in
the copy hooks. For example, when copying located objects we don’t want
to copy referenced subobjects that are not located in the object that
is being copied. Imagine, we have a content object that has an image object,
referenced by the cover attribute, but located in an independent
place.

>>> root = zope.location.location.Location()

>>> content = zope.location.location.Location()
>>> zope.location.location.locate(content, root, 'content')

>>> image = zope.location.location.Location()
>>> zope.location.location.locate(image, root, 'image.jpg')

>>> content.cover = image

Without any hooks, the image object will be cloned as well:

>>> new = zope.copy.copy(content)
>>> new.cover is image
False

That’s not what we’d expect though, so, let’s provide a copy hook
to deal with that. The copy hook for this case is provided by zope.location
package, but we’ll create one from scratch as we want to check out the
usage of the ResumeCopy.

>>> @zope.component.adapter(zope.location.interfaces.ILocation)
... @zope.interface.implementer(zope.copy.interfaces.ICopyHook)
... def location_copyfactory(obj):
... def factory(location, register):
... if not zope.location.location.inside(obj, location):
... return obj
... raise zope.copy.interfaces.ResumeCopy
... return factory
...
>>> zope.component.provideAdapter(location_copyfactory)

This hook returns objects as they are if they are not located inside
object that’s being copied, or raises ResumeCopy to signal that the
recursive copy should be continued and used for the object.

>>> new = zope.copy.copy(content)
>>> new.cover is image
True

Much better :-)

clone() vs copy()

As we stated before, there’s two functions that is used for copying
objects. The clone() - that does the job, and its wrapper, copy()
that calls clone() and then clears copy’s __parent__ and
__name__ attribute values.

Let’s create a location object with __name__ and __parent__ set.

>>> root = zope.location.location.Location()
>>> folder = zope.location.location.Location()
>>> folder.__name__ = 'files'
>>> folder.__parent__ = root

The clone() function will leave those attributes as is. Note that the
referenced __parent__ won’t be cloned, as we registered a hook for locations
in the previous section.

>>> folder_clone = zope.copy.clone(folder)
>>> folder_clone.__parent__ is root
True
>>> folder_clone.__name__ == 'files'
True

However, the copy() function will reset those attributes to None, as
we will probably want to place our object into another container with
another name.

>>> folder_clone = zope.copy.copy(folder)
>>> folder_clone.__parent__ is None
True
>>> folder_clone.__name__ is None
True

Notice, that if your object doesn’t have __parent__ and __name__
attributes at all, or these attributes could’nt be got or set because of
some protections (as with zope.security’s proxies, for example), you still
can use the copy() function, because it works for objects that don’t
have those attributes.

It won’t set them if original object doesn’t have them:

zope.copy.examples.Something
class Something(object): #pragma NO COVER
 pass

>>> from zope.copy.examples import Something
>>> s = Something()
>>> s_copy = zope.copy.copy(s)
>>> s_copy.__parent__
Traceback (most recent call last):
...
AttributeError: ...
>>> s_copy.__name__
Traceback (most recent call last):
...
AttributeError: ...

And it won’t fail if original object has them but doesn’t allow to set
them.

zope.copy.examples.Other
class Other(object): #pragma NO COVER
 @_apply
 def __name__():
 def fget(self):
 return 'something'
 def fset(self, value):
 raise AttributeError
 return property(fget, fset)
 @_apply
 def __parent__():
 def fget(self):
 return root
 def fset(self, value):
 raise AttributeError
 return property(fget, fset)

>>> from zope.copy.examples import Other
>>> from zope.copy.examples import root
>>> s = Other()
>>> s_copy = zope.copy.copy(s)
>>> s_copy.__parent__ is root
True
>>> s_copy.__name__ == 'something'
True

LocationCopyHook

The location copy hook is defined in zope.location but only activated
if this package is installed.

It’s job is to allow copying referenced objects that are not located inside
object that’s being copied.

To see the problem, imagine we want to copy an
ILocation object that
contains an attribute-based reference to another ILocation object
and the referenced object is not contained inside object being copied.

Without this hook, the referenced object will be cloned:

>>> from zope.component.globalregistry import base
>>> base.__init__('base') # blow away previous registrations
>>> from zope.location.location import Location, locate
>>> root = Location()
>>> page = Location()
>>> locate(page, root, 'page')
>>> image = Location()
>>> locate(page, root, 'image')
>>> page.thumbnail = image

>>> from zope.copy import copy
>>> page_copy = copy(page)
>>> page_copy.thumbnail is image
False

But if we will provide a hook, the attribute will point to the
original object as we might want.

>>> from zope.component import provideAdapter
>>> from zope.location.pickling import LocationCopyHook
>>> from zope.location.interfaces import ILocation
>>> provideAdapter(LocationCopyHook, (ILocation,))

>>> from zope.copy import copy
>>> page_copy = copy(page)
>>> page_copy.thumbnail is image
True

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	zope.copy 4.0 documentation

zope.copy API Reference

zope.copy.interfaces

API for zope.copy

	
exception zope.copy.interfaces.ResumeCopy[source]

	Don’t use the hook, resume the copy.

This is a special exception, raised from the copy hook to signal
copier that it should continue copying the object recursively.

See ICopyHook.__call__ method documentation.

	
interface zope.copy.interfaces.ICopyHook[source]

	An adapter to an object that is being copied

	
__call__(toplevel, register)[source]

	Given the top-level object that is being copied, return the
version of the adapted object that should be used in the new copy.

Raising ResumeCopy means that you are foregoing the hook: the
adapted object will continue to be recursively copied as usual.

If you need to have a post-copy actions executed, register a
callable with register. This callable must take a single
argument: a callable that, given an object from the original,
returns the equivalent in the copy.

See README.txt for more explanation.

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	zope.copy 4.0 documentation

Hacking on zope.copy

Getting the Code

The main repository for zope.copy is in the Zope Foundation
Github repository:

https://github.com/zopefoundation/zope.copy

You can get a read-only checkout from there:

$ git clone https://github.com/zopefoundation/zope.copy.git

or fork it and get a writeable checkout of your fork:

$ git clone git@github.com/jrandom/zope.copy.git

The project also mirrors the trunk from the Github repository as a
Bazaar branch on Launchpad:

https://code.launchpad.net/zope.copy

You can branch the trunk from there using Bazaar:

$ bzr branch lp:zope.copy

Working in a virtualenv

Installing

If you use the virtualenv package to create lightweight Python
development environments, you can run the tests using nothing more
than the python binary in a virtualenv. First, create a scratch
environment:

$ /path/to/virtualenv --no-site-packages /tmp/hack-zope.copy

Next, get this package registered as a “development egg” in the
environment:

$ /tmp/hack-zope.copy/bin/python setup.py develop

Running the tests

Then, you canrun the tests using the build-in setuptools testrunner:

$ /tmp/hack-zope.copy/bin/python setup.py test -q
...........
--
Ran 11 tests in 0.000s

OK

If you have the nose package installed in the virtualenv, you can
use its testrunner too:

$ /tmp/hack-zope.copy/bin/nosetests
............
--
Ran 12 tests in 0.011s

OK

If you have the coverage pacakge installed in the virtualenv,
you can see how well the tests cover the code:

$.tox/coverage/bin/nosetests --with-coverage
............
Name Stmts Miss Cover Missing
--
zope.copy 59 0 100%
zope.copy._compat 6 0 100%
zope.copy.examples 4 0 100%
zope.copy.interfaces 5 0 100%
--
TOTAL 74 0 100%
--
Ran 12 tests in 0.062s

OK

Building the documentation

zope.copy uses the nifty Sphinx documentation system
for building its docs. Using the same virtualenv you set up to run the
tests, you can build the docs:

$ /tmp/hack-zope.copy/bin/easy_install Sphinx
...
$ cd docs
$ PATH=/tmp/hack-zope.copy/bin:$PATH make html
sphinx-build -b html -d _build/doctrees . _build/html
...
build succeeded.

Build finished. The HTML pages are in _build/html.

You can also test the code snippets in the documentation:

$ PATH=/tmp/hack-zope.copy/bin:$PATH make doctest
sphinx-build -b doctest -d _build/doctrees . _build/doctest
...
running tests...

Document: narr

1 items passed all tests:
 93 tests in default
93 tests in 1 items.
93 passed and 0 failed.
Test passed.

Doctest summary
===============
 93 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
Testing of doctests in the sources finished, look at the \
 results in _build/doctest/output.txt.

Using zc.buildout

Setting up the buildout

zope.copy ships with its own buildout.cfg file and
bootstrap.py for setting up a development buildout:

$ /path/to/python2.6 bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
Develop: '/home/jrandom/projects/Zope/zope.event/.'
...

Running the tests

You can now run the tests:

$ bin/test --all
Running zope.testing.testrunner.layer.UnitTests tests:
 Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
 Ran 2 tests with 0 failures and 0 errors in 0.000 seconds.
Tearing down left over layers:
 Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

Using tox

Running Tests on Multiple Python Versions

tox [http://tox.testrun.org/latest/] is a Python-based test automation
tool designed to run tests against multiple Python versions. It creates
a virtualenv for each configured version, installs the current package
and configured dependencies into each virtualenv, and then runs the
configured commands.

zope.copy configures the following tox environments via
its tox.ini file:

	The py26, py27, py32, py33, py34, and pypy
environments build a virtualenv with the appropriate interpreter,
installs zope.copy and dependencies, and runs the tests
via python setup.py test -q.

	The coverage environment builds a virtualenv with python2.6,
installs zope.copy, installs
nose and coverage, and runs nosetests with statement
coverage.

	The docs environment builds a virtualenv with python2.6, installs
zope.copy, installs Sphinx and
dependencies, and then builds the docs and exercises the doctest snippets.

This example requires that you have a working python2.6 on your path,
as well as installing tox:

$ tox -e py26
GLOB sdist-make: .../zope.copy/setup.py
py26 sdist-reinst: .../zope.copy/.tox/dist/zope.copy-4.0.2dev.zip
py26 runtests: commands[0]
...........
--
Ran 11 tests in 0.000s

OK
___________________________________ summary ____________________________________
py26: commands succeeded
congratulations :)

Running tox with no arguments runs all the configured environments,
including building the docs and testing their snippets:

$ tox
GLOB sdist-make: .../zope.copy/setup.py
py26 sdist-reinst: .../zope.copy/.tox/dist/zope.copy-4.0.2dev.zip
py26 runtests: commands[0]
...
Doctest summary
===============
 93 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
___________________________________ summary ____________________________________
py26: commands succeeded
py27: commands succeeded
py32: commands succeeded
py33: commands succeeded
py34: commands succeeded
pypy: commands succeeded
pypy3: commands succeeded
coverage: commands succeeded
docs: commands succeeded
congratulations :)

Contributing to zope.copy

Submitting a Bug Report

zope.copy tracks its bugs on Github:

https://github.com/zopefoundation/zope.copy/issues

Please submit bug reports and feature requests there.

Sharing Your Changes

Note

Please ensure that all tests are passing before you submit your code.
If possible, your submission should include new tests for new features
or bug fixes, although it is possible that you may have tested your
new code by updating existing tests.

If have made a change you would like to share, the best route is to fork
the Githb repository, check out your fork, make your changes on a branch
in your fork, and push it. You can then submit a pull request from your
branch:

https://github.com/zopefoundation/zope.copy/pulls

If you branched the code from Launchpad using Bazaar, you have another
option: you can “push” your branch to Launchpad:

$ bzr push lp:~jrandom/zope.copy/cool_feature

After pushing your branch, you can link it to a bug report on Github,
or request that the maintainers merge your branch using the Launchpad
“merge request” feature.

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	zope.copy 4.0 documentation

 Python Module Index

 z

 			

 		
 z	

 	[image: -]
 	
 zope	

 	
 	
 zope.copy.interfaces	

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	zope.copy 4.0 documentation

Index

 _
 | I
 | R
 | Z

_

 	

 	__call__() (zope.copy.interfaces.ICopyHook method)

I

 	

 	ICopyHook (interface in zope.copy.interfaces)

R

 	

 	ResumeCopy

Z

 	

 	zope.copy.interfaces (module)

 Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		zope.copy 4.0 documentation »

 All modules for which code is available

		zope.copy.interfaces

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_modules/zope/copy/interfaces.html

 Navigation

 		
 index

 		
 modules |

 		zope.copy 4.0 documentation »

 		Module code »

 Source code for zope.copy.interfaces

##
#
Copyright (c) 2009 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""API for zope.copy
"""
import zope.interface

[docs]class ResumeCopy(Exception):
 """Don't use the hook, resume the copy.

 This is a special exception, raised from the copy hook to signal
 copier that it should continue copying the object recursively.

 See ICopyHook.__call__ method documentation.
 """

[docs]class ICopyHook(zope.interface.Interface):
 """An adapter to an object that is being copied"""

[docs] def __call__(toplevel, register):
 """Given the top-level object that is being copied, return the
 version of the adapted object that should be used in the new copy.

 Raising ResumeCopy means that you are foregoing the hook: the
 adapted object will continue to be recursively copied as usual.

 If you need to have a post-copy actions executed, register a
 callable with ``register``. This callable must take a single
 argument: a callable that, given an object from the original,
 returns the equivalent in the copy.

 See README.txt for more explanation.
 """

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		zope.copy 4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Zope Foundation Contributors.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/down.png

